3.263 \(\int \frac{x}{\sqrt{b x^2+c x^4}} \, dx\)

Optimal. Leaf size=31 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{b x^2+c x^4}}\right )}{\sqrt{c}} \]

[Out]

ArcTanh[(Sqrt[c]*x^2)/Sqrt[b*x^2 + c*x^4]]/Sqrt[c]

________________________________________________________________________________________

Rubi [A]  time = 0.0541314, antiderivative size = 31, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.176, Rules used = {2013, 620, 206} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{b x^2+c x^4}}\right )}{\sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Int[x/Sqrt[b*x^2 + c*x^4],x]

[Out]

ArcTanh[(Sqrt[c]*x^2)/Sqrt[b*x^2 + c*x^4]]/Sqrt[c]

Rule 2013

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[(a*x^Simplify[j/n]
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simplify[j
/n]] && EqQ[Simplify[m - n + 1], 0]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{\sqrt{b x^2+c x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{\sqrt{b x+c x^2}} \, dx,x,x^2\right )\\ &=\operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x^2}{\sqrt{b x^2+c x^4}}\right )\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{b x^2+c x^4}}\right )}{\sqrt{c}}\\ \end{align*}

Mathematica [A]  time = 0.0138622, size = 52, normalized size = 1.68 \[ \frac{x \sqrt{b+c x^2} \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b+c x^2}}\right )}{\sqrt{c} \sqrt{x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/Sqrt[b*x^2 + c*x^4],x]

[Out]

(x*Sqrt[b + c*x^2]*ArcTanh[(Sqrt[c]*x)/Sqrt[b + c*x^2]])/(Sqrt[c]*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 44, normalized size = 1.4 \begin{align*}{x\sqrt{c{x}^{2}+b}\ln \left ( x\sqrt{c}+\sqrt{c{x}^{2}+b} \right ){\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}}}}{\frac{1}{\sqrt{c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(c*x^4+b*x^2)^(1/2),x)

[Out]

1/(c*x^4+b*x^2)^(1/2)*x*(c*x^2+b)^(1/2)*ln(x*c^(1/2)+(c*x^2+b)^(1/2))/c^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.295, size = 174, normalized size = 5.61 \begin{align*} \left [\frac{\log \left (-2 \, c x^{2} - b - 2 \, \sqrt{c x^{4} + b x^{2}} \sqrt{c}\right )}{2 \, \sqrt{c}}, -\frac{\sqrt{-c} \arctan \left (\frac{\sqrt{c x^{4} + b x^{2}} \sqrt{-c}}{c x^{2} + b}\right )}{c}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-2*c*x^2 - b - 2*sqrt(c*x^4 + b*x^2)*sqrt(c))/sqrt(c), -sqrt(-c)*arctan(sqrt(c*x^4 + b*x^2)*sqrt(-c)/
(c*x^2 + b))/c]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{x^{2} \left (b + c x^{2}\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x**4+b*x**2)**(1/2),x)

[Out]

Integral(x/sqrt(x**2*(b + c*x**2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.18633, size = 53, normalized size = 1.71 \begin{align*} -\frac{\log \left ({\left | -2 \,{\left (\sqrt{c} x^{2} - \sqrt{c x^{4} + b x^{2}}\right )} \sqrt{c} - b \right |}\right )}{2 \, \sqrt{c}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*log(abs(-2*(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2))*sqrt(c) - b))/sqrt(c)